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3-way Canonical Polyadic Decomposition (CPD)
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Goal: Find (A,B,C) that minimize || E ||
A = [a1 aR], B = [b1 bR], C= [C1 CR]



Everything you see is Real




3-way CPD as Optimization Problem

Minimize |[Z-Y|
over Sg={Y: rank(Y) <R}

= if Z & Sg, then an optimal solution X (if it exists)
will be a boundary point of Sg

But : the set Sk is not closed for R > 2

Bini et al. (1979), Paatero (2000), Lim (2004)
De Silva & Lim (2008)



A misleading picture

set SR

rank < R

rank > R




Suppose Y =(A,B,C) —— optimal X and X & Si

Then some groups of rank-1 terms a,ob,oC, converge to

linear dependency and infinite norm

=» diverging rank-1 terms / components (“degeneracy”)

Also : slow convergence (“swamp”) of CPD algorithm

Harshman & Lundy (1984), Kruskal et al. (1989),
Krijnen et al. (2008), Stegeman & De Lathauwer (2011)



Two diverging rank-1 terms
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Y® + YO remains “small” and contributes to
a better CPD fit



Remarks on diverging rank-1 terms

e CPD sequence (A,B,C) may contain several groups of
diverging rank-1 terms

e In each group of rank-1 terms
cos(ag,a) * cos(bg,b;) - cos(c,, ;) is close to £1 (a.e.)

e For random data Z diverging rank-1 terms may occur
very often (up to 60-100%)

e Diverging rank-1 terms cannot be interpreted and
must be avoided when interpretation is the goal



Best low-rank approximation of IxJx2 arrays

Z rank(Z) R Best rank-R ?
I=] I+1 R=1 zero volume
I[=] I+1 R<I pos. volume
I[=] I R<I pos. volume
I>3 | min@,23) | J<R < min(1,2) almost

everywhere
I>] min(I,2]) R=] pos. volume
I>] min(I,2]) R<] pos. volume

Stegeman (2015)
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How to avoid diverging rank-1 terms in CPD (1)
=» optimal CPD solution exists under constraints:

e A, B or C have orthogonal columns
(Harshman & Lundy, 1984; Krijnen et al., 2008)

« Zand A, B and C are nonnegative
(Lim, 2005; Lim & Comon, 2009)

e cos(as,a;)+cos(b,,b;)+cos(c,c:) is bounded
(Lim & Comon, 2010)

e Add penalty terms / Tikhonov regularization
(Giordani & Rocci, 2013ab; Navasca et al., 2008; Li et al., 2013)
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How to avoid diverging rank-1 terms in CPD (2)

= change the CPD problem into: (De Silva & Lim, 2008)

Minimize ||Z-Y|

over closure of Sy

What is heeded?

=» Complete characterization of boundary points

= Algorithm to find an optimal boundary point
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Boundary points and algorithms are known for :

e IXJXK and R=2

via constrained HOSVD/Tucker3 of size 2x2x2
(Rocci & Giordani, 2010)

e IXJx2 and R < min(I,J)

via Generalized Schur Decomposition
(Stegeman & De Lathauwer, 2009; Stegeman, 2010)

e in both cases we do not need a CPD algorithm !

e in both cases the solution can be transformed to CPD
form when no diverging rank-1 terms occur
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Finding the optimal boundary point in general

Assumption:

Each group of d diverging rank-1 terms
has a limit with rank > d

Theorem: The limit of d=2 diverging rank-1 terms can
be written as (S,T,U)-G

with G =

1
0

0
1

0
0

-
0_

and rank(G) =3

(S,T,U):G = (siotiou;) + (sot,ou;) + (s;0t0u,)

De Silva & Lim (2008)
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Theorem: If the limit of d=3 diverging rank-1 terms
has multilinear rank (3,3,3), then it can be
written as (S,T,U)-G (a.e.) with

1 0 0|0 * 0|0 O 1
01000 *0 0O
§=_001000000_

and rank(G) =5

Stegeman (2012)
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Theorem: If the limit of d=4 diverging rank-1 terms
has multilinear rank (4,4,4), then it can be
written as (S,T,U)-G (a.e.) with

()

|
o O O =
o O = O
o = O O
= O O O
o O O O
O O O ¥
O O x O
O ¥ O O
o O O O
o O O O
O O O ¥
O O x O
o O O O
o O O O
o O O O
o O O =

and rank(G) = 7

Stegeman (2013)



Diverging rank-1 terms —> Block term decomp.

= (A,B1,C;) + ...+ (AnBnGCn)

L

— (SllTllul)’gl + ...+ (SmlelUm)‘gm

G =1 for a nondiverging rank-1 term (d;=1)
G; (djxd;xd;) for d; diverging rank-1 terms  (dj>1)

De Lathauwer (2008)
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Algorithm

1.

2.

Run a CPD algorithm, obtain solution (A,B,C)

When diverging rank-1 terms occur, order them in
groups and determine decomposition form of limit X

Compute initial values for decomposition of X from
(A,B,C)

Fit decomposition form of X to data Z using initial
values from (A,B,C). Simple ALS algorithm !

Stegeman (2012, 2013), Kiers & Smilde (1998)
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Numerical Example: 6x6x6 and R=6

CPD ALS with tolerance 1e-9 terminates after 19.645 iters
Y = (A,B,C) has 2+3 diverging components
IZ-Y || = 54.5370

fit model Z — (Slltllul) + (SZITZIUZ)’EZ +
(S3,T5,U3)+Gs + E

| Z—- X || = 54.5336, tolerance le-12, 137 iters

condition numbersof S, T, U are: 21.8, 6.3, 61.0
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Diverging rank-1 terms in a matrix problem

Minimize [|Z-Y |
over Dr={Y=ACA" Cdiagonal }

Theorem: For generic Z with some complex eigenvalues:
(i) the set Dgr (RxXR matrices) is not closed for R > 2
(i) no optimal solution exists

(iii) pairs of diverging rank-1 terms occur in A C A’
when converging to optimal boundary point X

Stegeman (2013)
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Link to the (real) Jordan canonical form

e Each pair of diverging rank-1 terms corresponds to
identical eigenvalues of X with only one eigenvector

e Optimal boundary point X satisfies the real Jordan form
P J P, with J = blockdiag(34, ... ,3m) Where

Ji =M\ for a nondiverging rank-1 term

1
J;=|0o ). | foreach pair of diverging rank-1 terms

Stegeman (2013)
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3-way Jordan form of the CPD limit point

eCPD Y = (A,B,C)-Iz implies diagonalization when
A,B,C have rank R

e Optimal boundary point X has decomposition
(S,T,U)-G, with G = blockdiag(G;, ..., G,) where

G =1 for a nondiverging rank-1 term

G; = djxd;xd; canonical form  for d; diverging
rank-1 terms

21



Final Remarks

e Avoid diverging rank-1 terms in CPD by
(i) imposing constraints, or by
(ii) including the boundary of the rank-R set

For method (ii) as presented, we have
e Uniqueness properties of decomposition of X for

max(d;)=2 in Stegeman (2012, 2014)

e Simulations with random Z in Stegeman (2012, 2013)
e Application to TV-ratings data in Stegeman (2014)

e Matlab codes online at www.alwinstegeman.nl
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