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3-way  Canonical Polyadic Decomposition (CPD) 
 

   

     

      

      =          + … +     + 

 

 

 
Z  =  a1 ๐ b1 ๐ c1  +  …  +  aR ๐ bR ๐ cR  +  E 

 
 

 

Goal:   Find  (A,B,C)  that minimize  ǁ E ǁ 

A = [a1 … aR], B = [b1 … bR], C = [c1 … cR]  

aR 

cR 

bR 

c1 

a1 
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Everything you see is Real 
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3-way  CPD  as  Optimization  Problem 
 
 

Minimize   ǁ Z – Y ǁ 

            over  SR = { Y :  rank(Y) ≤ R } 

      

  if  Z  SR , then an optimal solution X  (if it exists)  

will be a boundary point of SR   
 
But :  the set SR  is not closed for R ≥ 2 

 

Bini et al. (1979), Paatero (2000), Lim (2004)  
De Silva & Lim (2008) 
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A  misleading  picture 
 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 

 

set SR 
 

rank ≤ R 

•  Z   X 

    updates Y 

rank > R 
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Suppose  Y = (A,B,C)         optimal X  and  X  SR 

 
 
Then some groups of rank-1 terms  ar๐br๐cr  converge to 

linear dependency  and  infinite norm 

 
 diverging rank-1 terms / components  (“degeneracy”) 
 
 
Also :  slow convergence (“swamp”) of CPD algorithm  
 
 
Harshman & Lundy (1984), Kruskal et al. (1989),  
Krijnen et al. (2008), Stegeman & De Lathauwer (2011) 
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Two diverging rank-1 terms 
 
 

Y(s) = as ๐ bs ๐ cs   Y(t) = at ๐ bt ๐ ct  
 
 
 
 
 
 
 
 

 
Y(s) +  Y(t)  remains “small” and contributes to  

a better CPD fit 

Vec(Y(t)) 

Vec(Y(s)) 
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Remarks on diverging rank-1 terms 
 
  CPD sequence (A,B,C) may contain several groups of   
   diverging rank-1 terms 
 
  In each group of rank-1 terms 
   cos(as,at)۰cos(bs,bt)۰cos(cs,ct)  is close to ±1  (a.e.) 
 

  For random data Z diverging rank-1 terms may occur  
 very often (up to 60-100%) 

 
  Diverging rank-1 terms cannot be interpreted and   

 must be avoided when interpretation is the goal 
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Best low-rank approximation of I×J×2 arrays 

Stegeman (2015) 

Z rank(Z) R Best rank-R ? 

I = J I+1 R = I zero volume 

I = J I+1 R < I pos. volume 

I = J I R < I pos. volume 

I > J min(I,2J) J < R < min(I,2J) 
almost 

everywhere 

I > J min(I,2J) R = J pos. volume 

I > J min(I,2J) R < J pos. volume 
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How to avoid diverging rank-1 terms in CPD  (1) 
 
  optimal CPD solution exists under constraints: 
 
  A, B or C have orthogonal columns         
   (Harshman & Lundy, 1984; Krijnen et al., 2008) 
 

  Z and A, B and C are nonnegative  
 (Lim, 2005; Lim & Comon, 2009) 

 
  cos(as,at)۰cos(bs,bt)۰cos(cs,ct)  is bounded 
   (Lim & Comon, 2010) 

 
  Add penalty terms / Tikhonov regularization  
    (Giordani & Rocci, 2013ab; Navasca et al., 2008; Li et al., 2013) 
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How to avoid diverging rank-1 terms in CPD  (2) 
 
 
  change the CPD problem into:    (De Silva & Lim, 2008) 
 

Minimize   ǁ Z – Y ǁ 

        over  closure of SR  
 

 

What is needed? 
 
 Complete characterization of boundary points 

  Algorithm to find an optimal boundary point 
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Boundary points and algorithms are known for : 
 
 
  I×J×K  and  R=2   

via constrained HOSVD/Tucker3 of size 2×2×2 
(Rocci & Giordani, 2010) 

 

  I×J×2  and  R ≤ min(I,J)   
via Generalized Schur Decomposition 

(Stegeman & De Lathauwer, 2009; Stegeman, 2010) 
 

  in both cases we do not need a CPD algorithm ! 
 
  in both cases the solution can be transformed to CPD  

     form when no diverging rank-1 terms occur 
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Finding the optimal boundary point in general 
 
Assumption:  Each group of d diverging rank-1 terms  

has a limit with rank > d 
 
Theorem:  The limit of d=2 diverging rank-1 terms can  

be written as (S,T,U)۰G 
 

with   G = 









00

10

10

01

  and    rank(G) = 3 

 
(S,T,U)۰G  =  (s1๐t1๐u1) + (s2๐t2๐u1) + (s1๐t2๐u2) 

 
De Silva & Lim (2008) 
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Theorem: If the limit of d=3 diverging rank-1 terms  

has multilinear rank (3,3,3), then it can be 
written as (S,T,U)۰G  (a.e.) with 

 

G = 















000

000

100

000

*00

0*0

100

010

001

    

 
and  rank(G) = 5 

 
 

Stegeman (2012) 
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Theorem: If the limit of d=4 diverging rank-1 terms  

has multilinear rank (4,4,4), then it can be 
written as (S,T,U)۰G  (a.e.) with 

 

G = 




















0000

0000

0000

1000

0000

0000

*000

0*00

0000

*000

0*00

00*0

1000

0100

0010

0001

 

 

and  rank(G) ≥ 7 

 

Stegeman (2013) 
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Diverging rank-1 terms    Block term decomp. 

 

Y =  (A1,B1,C1)   + … +   (Am,Bm,Cm) 

 

 

X = (S1,T1,U1)۰G1  + … +  (Sm,Tm,Um)۰Gm 

 
 

Gj = 1     for a nondiverging rank-1 term (dj=1) 

Gj (dj×dj×dj)  for dj diverging rank-1 terms   (dj>1) 

 
 

De Lathauwer (2008) 
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Algorithm 
 

1. Run a CPD algorithm, obtain solution (A,B,C)  
 

2. When diverging rank-1 terms occur, order them in 
groups and determine decomposition form of limit X 

 
3. Compute initial values for decomposition of X from 

(A,B,C) 
 

4. Fit decomposition form of X to data Z using initial 
values from (A,B,C). Simple ALS algorithm ! 

 
Stegeman (2012, 2013), Kiers & Smilde (1998) 
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Numerical Example:  6×6×6  and  R=6 
 
CPD ALS with tolerance 1e-9 terminates after 19.645 iters 
 
Y = (A,B,C)  has 2+3 diverging components 
 
ǁ Z – Y ǁ2 = 54.5370      
 
fit model   Z  =  (s1,t1,u1)  +  (S2,T2,U2)۰G2 +  

(S3,T3,U3)۰G3  +  E
      

 
 
ǁ Z – X ǁ2 = 54.5336,   tolerance  1e-12,  137 iters 
 
condition numbers of  S, T, U  are:  21.8,  6.3,  61.0 
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Diverging rank-1 terms in a matrix problem 

 
Minimize   ǁ Z – Y ǁ 

            over  DR = { Y = A C A-1, C diagonal } 

      
Theorem:  For generic Z with some complex eigenvalues: 

(i)   the set DR (R×R matrices) is not closed for R ≥ 2 

(ii)   no optimal solution exists 

(iii)  pairs of diverging rank-1 terms occur in A C A-1 
when converging to optimal boundary point X 

Stegeman (2013) 
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Link to the (real) Jordan canonical form 

 
 Each pair of diverging rank-1 terms corresponds to 

identical eigenvalues of X with only one eigenvector 
 

 Optimal boundary point X satisfies the real Jordan form  
P J P-1, with J = blockdiag(J1, … ,Jm)  where  

 

Jj = λj    for a nondiverging rank-1 term 

 

Jj = 








j

j

λ0

1λ

  for each pair of diverging rank-1 terms 

Stegeman (2013) 
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3-way Jordan form of the CPD limit point 
 
 CPD  Y = (A,B,C)۰IR  implies diagonalization when  

A,B,C have rank R 
 

 Optimal boundary point X has decomposition 
(S,T,U)۰G , with G = blockdiag(G1, … , Gm)  where 

 
Gj = 1     for a nondiverging rank-1 term  

 

Gj = dj×dj×dj canonical form  for dj diverging  

rank-1 terms  
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Final Remarks 
 
 Avoid diverging rank-1 terms in CPD by 

(i)  imposing constraints, or by 
(ii)  including the boundary of the rank-R set 

 
For method (ii) as presented, we have 
  Uniqueness properties of decomposition of X for    

     max(dj)=2  in Stegeman (2012, 2014) 
  
  Simulations with random Z in Stegeman (2012, 2013) 

 
  Application to TV-ratings data in Stegeman (2014) 

 
  Matlab codes online at  www.alwinstegeman.nl 
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